

Website: www.asthafoundation.in

# **Frontiers in Crop Improvement**





Astha Foundation, Meerut (U.P.) India

# Genetic Variability for Yield and Yield Attributing Characters in Late Kharif Onion Genotypes Under New Alluvial Zone of West Bengal

## Ashish Ranjan<sup>1\*</sup> and Umesh Thapa<sup>2</sup>

<sup>1</sup>Department of Horticulture, Bihar Agricultural University, Sabour, Bhagalpur-813210, Bihar, India

#### **Abstract**

Highly significant variation for all characters due to genotype exhibited wide range of variability in the studied material. Moderate PCV and GCV were observed for average bulb weight, number of leaves, equatorial bulb diameter, polar bulb diameter, total soluble solid and bulb yield. The results indicated that the all characters exhibited high heritability. However, high heritability coupled with high genetic advance as percentage over mean (GAM) was observed in traits viz. number of leaves, leaf diameter, plant height, polar diameter, neck diameter, average weight of bulb, marketable yield and dry matter content in bulb indicating that simple selection would be sufficient for these traits to bring genetic improvement. In most of the cases, the genotypic correlation was higher than phenotypic correlation indicating highly heritable nature of the character like bulb yield per hectare which had positive and significant correlation with bulb weight (0.584),bulb polar diameter (0.390) and equatorial diameter (0.338) were the most influencing factors.

Key words: Late kharif onion, correlation and path coefficient analysis.

#### Introduction

Onion is a major vegetable crop, and it is an essential ingredient in many dishes as a vegetable and condiment. Besides salad and pickles, onion is used for preparation of dehydrated forms, such as powder and flakes, in processing industry to a great extent. The demand for onion is high in West Bengal. The bulb is typically available from April onwards, as onion is mostly grown during rabi season. Due to weather fluctuations, poor storage capabilities and farmer'signorance of its production technologyand a lack of promising varieties, onion cultivation in West Bengal is rarely practiced in Kharif. Onion harvesting in the country is limited to June to November (1). There is a severe onion shortage in the country between October and March, which causes prices to rise. A local onion harvest during the kharif season could be critical to closing the gap between supply and demand and stabilizing onion prices when there is a shortage. Furthermore, farmers can obtain higher returns during kharif through the production of onion.In the presence of varying environmental conditions or agro-climatic zones, crop varieties have wide variation in yield capacity. Because of this, it is difficult to determine which variety is superior. The selection of suitable genotype(s) plays an important role in enhancing the yield, productivity and keeping quality for environmental condition. For a continuous supply of onions throughout the year, onion production in the late

kharif season is crucial. Selection of high-yielding genotypes under West Bengal's agro-climatic conditions is necessary to meet out the domestic demand, ensure year-round supply as well as meet export demand.

#### Materials and Methods

The investigation was conducted at C block farm, Bidhan Chandra Krishi Viswavidyalaya, Kalyani in New Alluvial zone of West Bengal during late kharif, 2020-21. In a Randomized Block Design with three replications, fifteen onion genotypes were measured for growth, yield, and quantitative traits, using ten randomly selected plants from each replication. For elucidating the valid information from these experiments, various statistical analyses were performed on the data. A variety of parameters were used to evaluate the genetic variation, including genotypic and phenotypic co-efficient of variation, heritability as well as genetic advance over mean. Analysis of variance was performed with the data (2). Based on Burton's formula (3), we calculated genotype co-efficient of variation (GCV) and phenotype co-efficient of variation (PCV). In order to estimate genetic advance and heritability, formula suggested by (4) was used. Later, correlation coefficients at genotypic and phenotypic levels were calculated (5). Path coefficient was done as per Dewey and Lu (6). A correlationand path coefficient analysis between different characters werecarried out to determine the relationship between each of them and bulb yield. Below are the most notable findings of the experiment.

Received: April-2022; Revised: May-2022; Accepted: May-2022

<sup>&</sup>lt;sup>2</sup>Department of Vegetable Science, Bidhan Chand KrishiViswaVidyalaya, Mohanpur-741252, West Bengal, India

<sup>\*</sup>Corresponding AuthorEmail: aranjan1978@gmail.com

#### **Results and Discussion**

Mean performance of genotypes for growth, yield and quality parameters: The result on mean performance of late kharif onion genotype on growth, yield and quality parameters showed significant variation among tested genotypes and the data pertaining to these parameters have been depicted in Table-1. Among fifteen genotypes. the genotype RPG-1 produced significantly maximum number of leaves (11.30) which is closely followed by PRO-7 (11.07) and NHRDF Red 2 (10.83). Whereas lowest (7.33) number of leaves was found in Bhima Red. The existence of variability as leaf length ranged from 52.21 cm for DOGR-1657 to 31.07 cm for DOGR-1606 with a overall mean value of 44.80. Leaf diameter varies from 0.89 to 1.48 cm with an overall average value of 1.18 cm. The genotype NHRDF Red-2 was recorded the maximum leaf diameter (1.48 cm) which was followed by DOGR-1657 (1.37) and Bhima Shakti (1.37) while, minimum leaf diameter (0.89 cm) was recorded in genotype DOGR-1606.Among the different fifteen genotype PRO-7 had tallest (66.38 cm) followed by NHRDF Red-2 (65.55 cm) and DOGR-1669 (65.63 cm) (7. 8). The genotype Bhima Super had minimum neck thickness (0.92 cm) while maximum neck thickness was recorded in genotype Bhima red (1.62 cm) [9]. The genotype RPG-1 (101.27 days) took significantly minimum time to maturity. However, the genotype DOGR 1606 required maximum number of days to maturity (115.67days) with a grand mean of 106.27 days [10] [11]. The production of doubles bulb varies from 0.41% (PYO-102) to 2.73% (NHRDF Red-2) (9). The polar diameter and equatorial diameter showed minimum values as 38.20 mm and 55.80 mm respectively for genotype Bhimakiran and RPG-2 (9, 10). The highest average bulb weight was found in genotype DOGR-1605 (72.20 g) whereas the minimum was recorded for DOGR-1606 (38.40 g) (8, 9).

The total yield varied from 179.74 q/ha (DOGR-1606) to 273.96 q/ha (Agrifound Light Red) with overall average of 236.80 q/ha. Similarly marketable yield varied from171.63 q/ha (DOGR-1605) to 271.63 q/ha (DOGR-1605) with an overall mean of 230.52 q/ha. A significant difference may be due to contribution by higher individual bulb weight and size which might resulted in highest bulb yield (7, 8). The highest total soluble solid was found in genotype DOGR-1605 (12.99°Brix) while minimum was found in Bhima Red (9.72) (1).

The genotype BhimaKiran had maximum dry matter content in bulb (14.45%) whereas minimum of 9.70 % was found in PRO-7. The pyruvic acid content in bulb was varied from 1.46 to 2.54 with an overall mean value of

ble-1: Mean performance of late kharif genotypes for growth, vield and guality parameter.

| lable-i: Mean performance of late knarif genotypes | errormanc | e or late | knarır gel | notypes tor | r growtn, | yieid and | quaiity | parameter. |        |        |        |        |         |        |          |
|----------------------------------------------------|-----------|-----------|------------|-------------|-----------|-----------|---------|------------|--------|--------|--------|--------|---------|--------|----------|
| Genotypes                                          | NOL       | ᆸ         |            | H           | PD        | <u> </u>  | DB (%)  | QN         | DM     | WB (g) | ΤY     | MY     | TSS     | Dry. M | PA       |
|                                                    |           | (cm)      | (cm)       | (cm)        | (mm)      | (mm)      |         | (cm)       | (Days) |        | (d/ha) | (q/ha) | (°Brix) | (%)    | (mool/g) |
| BhimaKiran                                         | 8.53      | 44.66     | 1.22       | 64.23       | 38.20     | 41.44     | 2.16    | 1.09       | 111.11 | 53.66  | 187.80 | 175.31 | 9.95    | 14.45  | 1.83     |
| Bhimashakti                                        | 8.80      | 46.05     | 1.37       | 58.23       | 52.82     | 53.64     | 2.39    | 1.02       | 102.72 | 62.63  | 201.63 | 189.27 | 12.65   | 13.92  | 2.18     |
| Bhima Super                                        | 6.74      | 40.33     | 1.06       | 53.79       | 53.88     | 47.10     | 0.70    | 0.92       | 103.22 | 56.45  | 244.28 | 237.07 | 12.28   | 9.76   | 2.28     |
| PRO-7                                              | 10.20     | 46.23     | 1.22       | 66.38       | 53.30     | 47.77     | 0.65    | 0.99       | 109.55 | 65.87  | 250.75 | 240.93 | 10.80   | 9.70   | 2.45     |
| PYO-102                                            | 11.07     | 46.05     | 1.06       | 59.90       | 20.02     | 49.50     | 0.41    | 1.09       | 110.47 | 62.53  | 259.48 | 252.69 | 10.25   | 10.95  | 2.31     |
| NHRDF Red-2                                        | 10.83     | 38.73     | 1.48       | 65.55       | 53.43     | 52.92     | 2.73    | 1.43       | 104.22 | 52.80  | 228.06 | 224.93 | 12.32   | 11.65  | 2.45     |
| DoGR-1669                                          | 9.83      | 49.83     | 1.14       | 65.63       | 53.47     | 52.00     | 1.25    | 1.05       | 108.67 | 49.49  | 254.67 | 246.09 | 10.22   | 14.02  | 2.18     |
| DoGR-1657                                          | 10.80     | 52.21     | 1.37       | 63.99       | 53.57     | 52.13     | 1.46    | 1.56       | 106.00 | 50.42  | 236.13 | 227.04 | 11.48   | 12.16  | 2.08     |
| Bhima Raj                                          | 9.90      | 47.93     | 1.07       | 52.88       | 50.57     | 53.31     | 2.42    | 1.25       | 105.78 | 47.60  | 216.97 | 210.72 | 10.47   | 12.54  | 1.90     |
| Bhima Red                                          | 7.33      | 51.34     | 1.24       | 50.37       | 43.50     | 49.33     | 1.89    | 1.62       | 105.33 | 53.07  | 228.25 | 225.77 | 9.72    | 12.34  | 2.12     |
| ALR                                                | 7.35      | 45.60     | 1.14       | 50.63       | 46.53     | 51.54     | 1.06    | 1.05       | 103.33 | 66.07  | 273.96 | 267.77 | 12.36   | 10.60  | 1.46     |
| RPG-1                                              | 11.30     | 47.93     | 1.14       | 65.55       | 54.57     | 53.13     | 0.51    | 1.21       | 101.27 | 66.49  | 264.49 | 266.69 | 10.63   | 10.83  | 1.92     |
| RPG-2                                              | 9.90      | 38.63     | 1.24       | 65.11       | 55.80     | 46.10     | 0.49    | 1.35       | 105.13 | 58.40  | 252.40 | 247.67 | 11.16   | 11.18  | 2.19     |
| DOGR-1605                                          | 9.27      | 45.46     | 1.04       | 54.53       | 46.00     | 49.53     | 0.53    | 1.00       | 101.57 | 72.20  | 273.34 | 271.63 | 12.99   | 11.43  | 1.66     |
| DOGR-1606                                          | 8.50      | 31.07     | 0.89       | 38.80       | 41.11     | 41.57     | 1.72    | 1.30       | 115.67 | 38.40  | 179.74 | 174.23 | 12.62   | 11.77  | 2.54     |
| Mean                                               | 9.36      | 44.80     | 1.18       | 58.37       | 49.79     | 49.40     | 1.36    | 1.20       | 106.27 | 57.07  | 236.80 | 230.52 | 11.32   | 11.82  | 2.10     |
| S.Em                                               | 0.41      | 2.07      | 0.05       | 2.14        | 1.28      | 1.52      | 0.11    | 90.0       | 1.07   | 3.33   | 12.53  | 12.64  | 0.15    | 0.20   | 0.04     |
| C.D AT 5%                                          | 1.20      | 00.9      | 0.10       | 6.20        | 3.70      | 4.40      | 0.30    | 0.20       | 3.10   | 9.60   | 36.30  | 36.60  | 0.40    | 09.0   | 0.10     |
|                                                    |           |           |            |             |           |           |         |            |        |        |        |        |         |        |          |

- = Number of Leaves, LL = Leaf Length, LD = Leaf Diameter, PH = Plant Height, ND Neck Diameter, DB = Double Bulb, PD = Polar diameter, ED = Equitorial diameter, = Bulb Weight, TY = Total yield, MY = Marketable Yield, TSS = Total Soluble Solid, Dry M = Dry Matter Content, PA = Pyruvic Acid content NO WB ::

| у       | ieid and quanty | parameters. |               |         |         |       |        |
|---------|-----------------|-------------|---------------|---------|---------|-------|--------|
| SI. No. | Character       | SED         | Range         | GCV (%) | PCV (%) | h²    | GAM    |
| 1.      | NOL             | 0.593       | 6.74-11.30    | 14.86   | 16.77   | 78.56 | 27.14  |
| 2.      | LL (cm)         | 2.931       | 31.07-52.21   | 11.51   | 14.02   | 67.36 | 19.46  |
| 3.      | LD (cm)         | 0.066       | 0.89-1.48     | 12.18   | 14.00   | 75.70 | 21.83  |
| 4.      | PH (cm)         | 3.02        | 38.80-66.38   | 13.29   | 14.72   | 81.48 | 24.71  |
| 5.      | PD (mm)         | 1.808       | 38.20-55.80   | 10.61   | 11.50   | 85.04 | 20.15  |
| 6.      | ED (mm)         | 2.155       | 41.44-53.64   | 7.45    | 9.17    | 66.03 | 12.47  |
| 7.      | DB (%)          | 0.161       | 0.41-2.73     | 57.93   | 59.70   | 94.16 | 115.80 |
| 8.      | ND (cm)         | 0.081       | 0.92-1.62     | 17.41   | 19.29   | 81.49 | 32.38  |
| 9.      | DM (Days)       | 1.513       | 101.27-115.67 | 3.68    | 4.07    | 81.67 | 6.85   |
| 10.     | WB (g)          | 4.703       | 38.40-72.20   | 14.58   | 17.74   | 67.62 | 24.70  |
| 11.     | TY (q/ha)       | 17.573      | 179.74-273.96 | 11.34   | 14.53   | 60.87 | 18.22  |
| 12.     | MY (q/ha)       | 17.878      | 174.23-271.63 | 12.54   | 15.73   | 63.55 | 20.60  |
| 13.     | TSS (°Brix)     | 0.265       | 9.72-12.99    | 9.75    | 10.16   | 92.07 | 19.26  |
| 14.     | Dry. M (%)      | 0.287       | 9.70-14.45    | 12.17   | 12.53   | 94.38 | 24.36  |
|         |                 |             |               |         |         |       |        |

Table-2: Estimates of mean, range, components of variance, heritability and genetic advance as percent of mean for growth, vield and quality parameters.

GV = Genotypic variance, PV = Phenotypic variance, GCV = Genotypic coefficient of variance, PCV = Phenotypic coefficient of variance, h2 = Heritability (%), GAM = Genetic advance (per cent mean).

14.30

1.46-2.54

2.10. The highest pyruvic acid content was found in DOGR-1606 (2.54)[13].

0.051

 $PA(\mu mol/g)$ 

#### Genetic variability, heritability and genetic advance:

The extent variations observed due to genetic factors were worked out for fifteen genotypes for late kharif are presented in Table-2. The PCV and GCV for all the traits are varied from 4.073 to 59.701% and 7.447 to 57.931%, respectively. The results indicated that the value of phenotypic coefficient of variation (PCV) were higher in magnitude than that of genotypic coefficient of variation (GCV) for all the characters indicating that the environmental had a great role in influencing the expression of characters (12, 13). The moderate PCV and GCV were recorded for number of leaves. The Leaf length, leaf diameter, plant height, polar diameter, neck diameter, bulb weight, total yield, marketable yield, dry matter content and pyruvic acid content. However highest GCV and PCV were recorded for doubles bulb percentage. The high value showed responsiveness of the attributes for making further improvement by selection (14, 15). While, low PCV and GCV were observed for equatorial diameter, days to maturity and total soluble solid (TSS) content of bulb (15, 16).

Most of the traits viz. number of leaves leaf diameter, leaf diameter plant height, polar diameter, double bulb percent, neck diameter, days to maturity, total soluble solid, dry matter content and pyruvic acid content in bulb exhibiting very high heritability whereas equatorial diameter, weight of bulb, total yield and marketable yield exhibited high heritability. High heritability for these traits indicatedpresence of additive gene action. The heritability and genetic advance as percentage of mean were varied from 60.87% (total yield) to 95.82 % (pyruvic acid content

in bulb) and 6.85% (days to maturity) to 115.80 % (double bulbs %) respectively.

95.83

28.83

14.61

The high heritability andhigh genetic advance over mean were recorded for characters viz. number of leaves per plant, plant height, leaf diameter, polar diameter, neck diameter, percentage of double bulb, average bulb weight, marketable yield dry matter content, and pyruvic acid content in bulb. However, high genetic advance as percentage of mean were exhibited for all the traits except days to maturity which was low (6.74%).

High heritability (> 60%) but medium genetic advance as percentage of mean (10-20%) was exhibited for character like equatorial diameter, total yield and TSS. However, high heritability (85.76%) and low genetic advance as percentage of mean (6.74%) were exhibited in days to maturity character. The results revealed that high heritability for these traits in onion was mainly under genetic control and is less influenced by environment.

Estimates of genotypic coefficient of variation (11.34% and 12.54%) and phenotypic coefficient of variation (14.53 and 15.73%) were moderate and noticed high heritability (60.87% and 63.55%) for both total yield and marketable yield were recorded. Whereas moderate GAM (18.22%) was noticed for total yield while high GAM (20.60%) was noticed for marketable yield trait. High heritability coupled with high genetic advance, indicated the influence of additive gene action (11, 12, 15, 17).

Studies on character associationship: For determining the relationship between different characters in late kharif onion, genotypic and phenotypic correlation coefficients were calculated. The correlation coefficients with their magnitude and direction are shown in Table-3. The

| parameters.           |
|-----------------------|
| quality               |
| ield and              |
| growth, y             |
| for gro               |
| among                 |
| lation coefficients a |
| correlation           |
| ypic                  |
| Phenot                |
| ic and                |
| Table-3 : Genotypi    |
| <br>က                 |
| <b>Table</b>          |

| L1      LP      PH (4m)      PD      ED      NB (%)      NB      DM      WB (9)      TY        2.36%      A      A      PD      ED      PB (%)      NB      DM      WB (9)      TY        2.26%      A      A      A      A      A      A      A      A      A      A      A      A      A      A      A      A      A      A      A      A      A      A      A      A      A      A      A      A      A      A      A      A      A      A      A      A      A      A      A      A      A      A      A      A      A      A      A      A      A      A      A      A      A      A      A      A      A      A      A      A      A      A      A      A      A      A      A      A      A      A      A      A      A      A      A      A      A      A      A      A      A      A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             | • |                      |                      |                      |                      |                      |                      |                     |                      | 1                    |                      |                      |                      |                      |                      |    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|---------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----|
| C   C   C   C   C   C   C   C   C   C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |   | NOL                  | ==                   | CD                   | PH (cm)              | PD                   | <u> </u>             | DB (%)              | N                    | DM<br>(Days)         | WB (g)               | Δ                    | MY                   | TSS                  | Dry. M<br>(%)        | РА |
| 6      0.1863**      3      4      4      4      1.1864**      4      4      1.1864**      4      4      1.1864**      4      4      1.1864**      4      4      1.1864**      4      4      1.1864**      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4 <t< th=""><th>NOL</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NOL         |   |                      |                      |                      |                      |                      |                      |                     |                      |                      |                      |                      |                      |                      |                      |    |
| 6      0.214**      0.315**      R. R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             | G | 0.185 <sup>NS</sup>  |                      |                      |                      |                      |                      |                     |                      |                      |                      |                      |                      |                      |                      |    |
| G      0.2891**      0.3545*      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             | ۵ | 0.214 <sup>NS</sup>  |                      |                      |                      |                      |                      |                     |                      |                      |                      |                      |                      |                      |                      |    |
| P      0.2696%      0.684%      0.674**      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             | ഗ | 0.281 <sup>NS</sup>  | 0.315 <sup>NS</sup>  |                      |                      |                      |                      |                     |                      |                      |                      |                      |                      |                      |                      |    |
| G      0.5344"      0.5344"      0.577*      0.3894"      0.572*      0.5894"      0.572*      0.5894"      0.572*      0.5894"      0.572*      0.5894"      0.572*      0.5894"      0.572*      0.5894"      0.572*      0.5894"      0.572*      0.5894"      0.572*      0.5894"      0.5894"      0.5894"      0.5894"      0.5894"      0.5894"      0.5894"      0.5894"      0.5894"      0.5894"      0.7894"      0.7894"      0.7894"      0.7894"      0.7894"      0.7894"      0.7894"      0.7894"      0.7894"      0.7894"      0.7894"      0.7894"      0.7894"      0.7894"      0.7894"      0.7894"      0.7894"      0.7894"      0.7894"      0.7894"      0.7894"      0.7894"      0.7894"      0.7894"      0.7894"      0.7894"      0.7894"      0.7894"      0.7894"      0.7894"      0.7894"      0.7894"      0.7894"      0.7894"      0.7894"      0.7894"      0.7894"      0.7894"      0.7894"      0.7894"      0.7894"      0.7894"      0.7894"      0.7894"      0.7894"      0.7894"      0.7894"      0.7894"      0.7894"      0.7894"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | ۵ | 0.269 <sup>NS</sup>  | 0.266 <sup>NS</sup>  |                      |                      |                      |                      |                     |                      |                      |                      |                      |                      |                      |                      |    |
| P      0.577**      0.380%*      0.552**      3.52**      3.52**      3.52**      3.52**      3.52**      3.52**      3.52**      3.52**      3.52**      3.52**      3.52**      3.52**      3.52**      3.52**      3.52**      3.52**      3.52**      3.52**      3.52**      3.52**      3.52**      3.52**      3.52**      3.52**      3.52**      3.52**      3.52**      3.52**      3.52**      3.52**      3.52**      3.52**      3.52**      3.52**      3.52**      3.52**      3.52**      3.52**      3.52**      3.52**      3.52**      3.52**      3.52**      3.52**      3.52**      3.52**      3.52**      3.52**      3.52**      3.52**      3.52**      3.52**      3.52**      3.52**      3.52**      3.52**      3.52**      3.52**      3.52**      3.52**      3.52**      3.52**      3.52**      3.52**      3.52**      3.52**      3.52**      3.52**      3.52**      3.52**      3.52**      3.52**      3.52**      3.52**      3.52**      3.52**      3.52**      3.52**      3.52**      3.52**      3.52** <td>PH (cm)</td> <td>ഗ</td> <td>0.692**</td> <td>0.384<sup>NS</sup></td> <td>0.674**</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PH (cm)     | ഗ | 0.692**              | 0.384 <sup>NS</sup>  | 0.674**              |                      |                      |                      |                     |                      |                      |                      |                      |                      |                      |                      |    |
| 6      0.541**      0.146**      0.3921**      0.552**      R. R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | ۵ | 0.570**              | 0.380 <sup>NS</sup>  | 0.535**              |                      |                      |                      |                     |                      |                      |                      |                      |                      |                      |                      |    |
| P      0.421 <sup>48</sup> 0.198 <sup>48</sup> 0.342 <sup>48</sup> 0.565 <sup>4</sup> 0.127 <sup>48</sup> 0.681 <sup>4</sup> 0.881 <sup>48</sup> 0.481 <sup>48</sup> 0.681 <sup>48</sup> 0.127 <sup>48</sup> 0.127 <sup>48</sup> 0.128 <sup>48</sup> 0.068 <sup>48</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PD (mm)     | Ŋ | 0.541**              | 0.146 <sup>NS</sup>  | 0.393 <sup>NS</sup>  | 0.572**              |                      |                      |                     |                      |                      |                      |                      |                      |                      |                      |    |
| G      0.411*      0.688**      0.481*      0.268**      0.641**      0.684**      0.481*      0.684**      0.655**      3.78**      0.655**      3.78**      0.655**      3.78**      0.655**      3.78**      0.658**      0.658**      0.658**      0.658**      0.127%*      0.145%*      0.628**      0.127%*      0.118**      0.688**      0.128**      0.128**      0.128**      0.128**      0.128**      0.128**      0.128**      0.128**      0.128**      0.128**      0.128**      0.128**      0.128**      0.128**      0.128**      0.128**      0.128**      0.128**      0.128**      0.128**      0.128**      0.128**      0.128**      0.128**      0.128**      0.128**      0.128**      0.128**      0.128**      0.128**      0.128**      0.128**      0.128**      0.128**      0.128**      0.128**      0.128**      0.128**      0.128**      0.128**      0.128**      0.128**      0.128**      0.128**      0.128**      0.128**      0.128**      0.128**      0.128**      0.128**      0.128**      0.128**      0.128**      0.128**      0.128** <td></td> <td>۵</td> <td>0.421<sup>NS</sup></td> <td>0.198<sup>NS</sup></td> <td>0.342<sup>NS</sup></td> <td>0.555**</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             | ۵ | 0.421 <sup>NS</sup>  | 0.198 <sup>NS</sup>  | 0.342 <sup>NS</sup>  | 0.555**              |                      |                      |                     |                      |                      |                      |                      |                      |                      |                      |    |
| P      0.339 <sup>4</sup> / <sub>8</sub> 0.436 <sup>4</sup> 0.266 <sup>1</sup> / <sub>8</sub> 0.565 <sup>4</sup> 0.127 <sup>18</sup> 0.565 <sup>4</sup> 0.128 <sup>18</sup> 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ED (mm)     | ഗ | 0.411*               | 0.688**              | 0.481*               | 0.306 <sup>NS</sup>  | 0.641**              |                      |                     |                      |                      |                      |                      |                      |                      |                      |    |
| G      -0.105 kW      -0.043 kW      -0.145 kW      -0.205 kW      -0.127 kW      -0.15 kW      <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             | ۵ | 0.339 <sup>NS</sup>  | 0.436*               | 0.328 <sup>NS</sup>  | 0.266 <sup>NS</sup>  | 0.565**              |                      |                     |                      |                      |                      |                      |                      |                      |                      |    |
| P      -0.088 k³      -0.027 k³      -0.156 k³      -0.28 k³      0.129 k³      0.129 k³      0.129 k³      0.144 k³      0.328 k³      0.144 k³      0.328 k³      0.144 k³      0.324 k³      0.144 k³      0.324 k³      0.324 k³      0.144 k³      0.324 k³      0.124 k³      0.058 k³      0.144 k³      0.058 k³      0.058 k³      0.144 k³      0.058 k³ <t< td=""><td>DB (%)</td><td>ഗ</td><td>-0.115<sup>NS</sup></td><td>-0.043<sup>NS</sup></td><td>0.448*</td><td>-0.145<sup>NS</sup></td><td>-0.295<sup>NS</sup></td><td>0.127<sup>NS</sup></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DB (%)      | ഗ | -0.115 <sup>NS</sup> | -0.043 <sup>NS</sup> | 0.448*               | -0.145 <sup>NS</sup> | -0.295 <sup>NS</sup> | 0.127 <sup>NS</sup>  |                     |                      |                      |                      |                      |                      |                      |                      |    |
| G      0.1243 <sup>ks</sup> 0.1068 <sup>ks</sup> 0.0524 <sup>ks</sup> 0.058 <sup>ks</sup> 0.114 <sup>ks</sup> 0.396 <sup>ks</sup> 0.114 <sup>ks</sup> 0.366 <sup>ks</sup> 0.114 <sup>ks</sup> 0.114 <sup>ks</sup> 0.366 <sup>ks</sup> 0.114 <sup>ks</sup> 0.114 <sup>ks</sup> 0.114 <sup>ks</sup> 0.056 <sup>ks</sup> 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             | ۵ | -0.088 <sup>NS</sup> | -0.027 <sup>NS</sup> | 0.377 <sup>NS</sup>  | -0.156 <sup>NS</sup> | -0.268 <sup>NS</sup> | 0.129 <sup>NS</sup>  |                     |                      |                      |                      |                      |                      |                      |                      |    |
| P      0.168 <sup>1</sup> / <sub>8</sub> 0.024 <sup>1</sup> / <sub>8</sub> -0.058 <sup>1</sup> / <sub>8</sub> -0.058 <sup>1</sup> / <sub>8</sub> 0.0254 <sup>1</sup> / <sub>8</sub> -0.058 <sup>1</sup> / <sub>8</sub> 0.024 <sup>1</sup> / <sub>8</sub> 0.026 <sup>1</sup> / <sub>8</sub> 0.024 <sup>1</sup> / <sub>8</sub> 0.026 <sup>1</sup> / <sub>8</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND (cm)     | ഗ | 0.213 <sup>NS</sup>  | 0.106 <sup>NS</sup>  | 0.445*               | -0.052 <sup>NS</sup> | -0.038 <sup>NS</sup> | 0.114 <sup>NS</sup>  | 0.396 <sup>NS</sup> |                      |                      |                      |                      |                      |                      |                      |    |
| G      0.030 <sup>NS</sup> -0.386 <sup>NS</sup> -0.224 <sup>NS</sup> -0.244 <sup>NS</sup> -0.748*      -0.122 <sup>NS</sup> 0.013 <sup>NS</sup> 0.006 <sup>NS</sup> -0.325 <sup>NS</sup> -0.244 <sup>NS</sup> -0.748*      -0.138 <sup>NS</sup> 0.013 <sup>NS</sup> -0.030*      -0.048*      -0.048*      -0.048*      -0.048*      -0.048*      -0.048*      -0.040*      -0.048*      -0.048*      -0.048*      -0.048*      -0.048*      -0.048*      -0.048*      -0.046*      -0.040*      -0.040*      -0.040*      -0.040*      -0.040*      -0.040*      -0.040*      -0.040*      -0.040*      -0.040*      -0.040*      -0.040*      -0.040*      -0.040*      -0.040*      -0.040*      -0.040*      -0.040*      -0.040*      -0.040*      -0.040*      -0.040*      -0.040*      -0.040*      -0.040*      -0.040*      -0.040*      -0.040*      -0.040*      -0.040*      -0.040*      -0.040*      -0.040*      -0.040*      -0.040*      -0.040*      -0.040*      -0.040*      -0.040*      -0.040*      -0.040*      -0.040*      -0.040*      -0.040*      -0.040*      -0.040*      -0.040*      -0.040*      -0.040*      -0.040*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             | ۵ | 0.168 <sup>NS</sup>  | 0.065 <sup>NS</sup>  | 0.294 <sup>NS</sup>  | -0.031 <sup>NS</sup> | -0.058 <sup>NS</sup> | 0.053 <sup>NS</sup>  | 0.324 <sup>NS</sup> |                      |                      |                      |                      |                      |                      |                      |    |
| P      0.004 <sup>NS</sup> -0.225 <sup>NS</sup> -0.209 <sup>NS</sup> -0.441*      -0.547*      0.133 <sup>NS</sup> 0.013 <sup>NS</sup> -0.686**      -0.686**      -0.686**      -0.686**      -0.686**      -0.686**      -0.686**      -0.686**      -0.686**      -0.686**      -0.686**      -0.686**      -0.686**      -0.686**      -0.686**      -0.686**      -0.686**      -0.686**      -0.680**      -0.680**      -0.686**      -0.680**      -0.686**      -0.686**      -0.686**      -0.686**      -0.686**      -0.686**      -0.696**      -0.696**      -0.696**      -0.696**      -0.696**      -0.696**      -0.696**      -0.696**      -0.696**      -0.686**      -0.696**      -0.696**      -0.686**      -0.696**      -0.696**      -0.696**      -0.696**      -0.696**      -0.696**      -0.696**      -0.696**      -0.696**      -0.696**      -0.696**      -0.696**      -0.696**      -0.696**      -0.696**      -0.696**      -0.696**      -0.696**      -0.696**      -0.696**      -0.696**      -0.696**      -0.696**      -0.696**      -0.696**      -0.696**      -0.696**      -0.696**      -0.696**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DM (Days)   | ഗ | 0.030 <sup>NS</sup>  | -0.383 <sup>NS</sup> | -0.386 <sup>NS</sup> | -0.224 <sup>NS</sup> | -0.492*              | -0.748**             | 0.122 <sup>NS</sup> | 0.066 <sup>NS</sup>  |                      |                      |                      |                      |                      |                      |    |
| G      0.138 <sup>NS</sup> 0.370 <sup>NS</sup> 0.127 <sup>NS</sup> 0.256 <sup>NS</sup> 0.226 <sup>NS</sup> 0.0607**      0.0530*      0.068**      0.068**      0.068**      0.068**      0.068**      0.068**      0.068**      0.068**      0.068**      0.068**      0.068**      0.068**      0.068**      0.068**      0.068**      0.068**      0.068**      0.068**      0.068**      0.068**      0.068**      0.068**      0.068**      0.068**      0.068**      0.068**      0.068**      0.068**      0.068**      0.068**      0.068**      0.068**      0.068**      0.068**      0.068**      0.068**      0.068**      0.068**      0.068**      0.068**      0.068**      0.068**      0.068**      0.068**      0.068**      0.068**      0.068**      0.068**      0.068**      0.068**      0.068**      0.068**      0.068**      0.068**      0.068**      0.068**      0.068**      0.068**      0.068**      0.068**      0.068**      0.068**      0.068**      0.068**      0.068**      0.068**      0.068**      0.068**      0.068**      0.068**      0.068**      0.068**      0.068**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             | ۵ | 0.004 <sup>NS</sup>  | -0.297 <sup>NS</sup> | -0.325 <sup>NS</sup> | -0.209 <sup>NS</sup> | -0.441*              | -0.547*              | 0.133 <sup>NS</sup> | 0.013 <sup>NS</sup>  |                      |                      |                      |                      |                      |                      |    |
| P      0.0278 <sup>NS</sup> 0.0284 <sup>NS</sup> 0.220 <sup>NS</sup> 0.249 <sup>NS</sup> 0.0487*      0.0464*      0.0464*        G      0.267 <sup>NS</sup> 0.077 <sup>NS</sup> 0.379 <sup>NS</sup> 0.545*      0.518*      -0.819*      -0.259 <sup>NS</sup> 0.058      0.058        P      0.167 <sup>NS</sup> 0.201 <sup>NS</sup> 0.236 <sup>NS</sup> 0.545*      0.518*      -0.645*      0.259 <sup>NS</sup> 0.058      0.584*      0.758*      1.000**        G      0.167 <sup>NS</sup> 0.201 <sup>NS</sup> 0.252 <sup>NS</sup> 0.527*      0.080 <sup>NS</sup> 0.068*      0.011 <sup>NS</sup> 0.048*      0.058*      0.068*      0.011 <sup>NS</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | WB (g)      | ഗ | 0.138 <sup>NS</sup>  | 0.370 <sup>NS</sup>  | 0.127 <sup>NS</sup>  | 0.367 <sup>NS</sup>  | 0.255 <sup>NS</sup>  | 0.328 <sup>NS</sup>  | -0.607**            | -0.530*              | -0.686**             |                      |                      |                      |                      |                      |    |
| G      0.267 <sup>NS</sup> 0.481*     077 <sup>NS</sup> 0.396 <sup>NS</sup> 0.545*      0.518*     0.819**      -0.259 <sup>NS</sup> 0.632**      0.780**      0.780**      0.780**        P      0.167 <sup>NS</sup> 0.203 <sup>NS</sup> 0.236 <sup>NS</sup> 0.390 <sup>NS</sup> 0.388      0.245**      -0.211 <sup>NS</sup> 0.648**      0.584*      1.000**        P      0.178 <sup>NS</sup> 0.215 <sup>NS</sup> 0.227 <sup>NS</sup> 0.288 <sup>NS</sup> 0.668 <sup>NS</sup> 0.011 <sup>NS</sup> -0.150 <sup>NS</sup> 0.775*      1.000**        P      0.178 <sup>NS</sup> 0.220 <sup>NS</sup> 0.073 <sup>NS</sup> 0.066 <sup>NS</sup> 0.011 <sup>NS</sup> 0.015 <sup>NS</sup> 0.011 <sup>NS</sup> 0.014 <sup>NS</sup> 0.011 <sup>NS</sup> 0.014 <sup>NS</sup> 0.008 <sup>NS</sup> 0.014 <sup>NS</sup> 0.014 <sup>NS</sup> 0.008 <sup>NS</sup> 0.014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             | ۵ | 0.073 <sup>NS</sup>  | 0.198 <sup>NS</sup>  | 0.076 <sup>NS</sup>  | 0.284 <sup>NS</sup>  | 0.220 <sup>NS</sup>  | 0.249 <sup>NS</sup>  | -0.487*             | -0.423 <sup>NS</sup> | -0.464*              |                      |                      |                      |                      |                      |    |
| P      0.167 <sup>NS</sup> 0.203 <sup>NS</sup> -0.018 <sup>NS</sup> 0.338 <sup>NS</sup> 0.045 <sup>+</sup> *      -0.205 <sup>NS</sup> 0.0261 <sup>NS</sup> 0.058 <sup>+</sup> *      0.011 <sup>NS</sup> 0.011 <sup>NS</sup> 0.024 <sup>NS</sup> 0.011 <sup>NS</sup> 0.014 <sup>NS</sup> 0.024 <sup>NS</sup> 0.014 <sup>NS</sup> 0.024 <sup>NS</sup> 0.014 <sup>NS</sup> 0.025 <sup>NS</sup> 0.025 <sup>NS</sup> 0.014 <sup>NS</sup> 0.025 <sup>NS</sup> 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TY (q/ha)   | ഗ | 0.267 <sup>NS</sup>  | 0.481*               | -0.077 <sup>NS</sup> | 0.379 <sup>NS</sup>  | 0.545*               | 0.518*               | -0.819**            | -0.259 <sup>NS</sup> | -0.632**             | 0.780**              |                      |                      |                      |                      |    |
| G      0.274 <sup>NS</sup> 0.411 <sup>NS</sup> 0.0102 <sup>NS</sup> 0.257 <sup>NS</sup> 0.552*      -0.807**      -0.265 <sup>NS</sup> 0.0548*      0.515*      1.000**        P      0.178 <sup>NS</sup> 0.215 <sup>NS</sup> 0.227 <sup>NS</sup> 0.288 <sup>NS</sup> 0.333 <sup>NS</sup> 0.063*      0.015 <sup>NS</sup> 0.015 <sup>NS</sup> 0.571*      0.981**        P      0.222 <sup>NS</sup> 0.056**      0.073*      0.065 <sup>NS</sup> 0.011 <sup>NS</sup> 0.015 <sup>NS</sup> 0.136 <sup>NS</sup> 0.136 <sup>NS</sup> 0.008 <sup>NS</sup> 0.014 <sup>NS</sup> 0.147 <sup>NS</sup> 0.136 <sup>NS</sup> 0.000 <sup>NS</sup> 0.000      0.136 <sup>NS</sup> 0.000      0.136 <sup>NS</sup> 0.000      0.136 <sup>NS</sup> 0.000      0.147 <sup>NS</sup> 0.147 <sup>NS</sup> 0.147 <sup>NS</sup> 0.147 <sup>NS</sup> 0.049 <sup>NS</sup> 0.040 <sup>NS</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             | ۵ | 0.167 <sup>NS</sup>  | 0.203 <sup>NS</sup>  | -0.018 <sup>NS</sup> | 0.236 <sup>NS</sup>  | 0.390 <sup>NS</sup>  | 0.338 <sup>NS</sup>  | -0.645**            | -0.211 <sup>NS</sup> | -0.388 <sup>NS</sup> | 0.584*               |                      |                      |                      |                      |    |
| P      0.178 <sup>NS</sup> 0.225 <sup>NS</sup> 0.035 <sup>NS</sup> 0.053 <sup>NS</sup> -0.638**      -0.150 <sup>NS</sup> -0.150 <sup>NS</sup> 0.057 <sup>NS</sup> 0.073 <sup>NS</sup> 0.066 <sup>NS</sup> 0.011 <sup>NS</sup> -0.0254 <sup>NS</sup> 0.035 <sup>NS</sup> 0.006 <sup>NS</sup> 0.011 <sup>NS</sup> 0.0254 <sup>NS</sup> 0.015 <sup>NS</sup> 0.011 <sup>NS</sup> 0.025 <sup>NS</sup> 0.011 <sup>NS</sup> 0.025 <sup>NS</sup> 0.011 <sup>NS</sup> 0.025 <sup>NS</sup> 0.014 <sup>NS</sup> 0.025 <sup>NS</sup> 0.014 <sup>NS</sup> 0.025 <sup>NS</sup> 0.005 <sup>NS</sup> 0.025 <sup>NS</sup> 0.049 <sup>NS</sup> 0.049 <sup>NS</sup> 0.049 <sup>NS</sup> 0.049 <sup>NS</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MY (q/ha)   | Ŋ | 0.274 <sup>NS</sup>  | 0.411 <sup>NS</sup>  | -0.102 <sup>NS</sup> | 0.320 <sup>NS</sup>  | 0.515*               | 0.522*               | -0.807**            | -0.205 <sup>NS</sup> | -0.648**             | 0.755**              | 1.000**              |                      |                      |                      |    |
| ) G -0.250 <sup>NS</sup> -0.566** -0.046 <sup>NS</sup> -0.388 <sup>NS</sup> 0.065 <sup>NS</sup> 0.066 <sup>NS</sup> 0.011 <sup>NS</sup> -0.254 <sup>NS</sup> 0.015 <sup>NS</sup> 0.015 <sup>NS</sup> 0.0108 <sup>NS</sup> 0.0014 <sup>NS</sup> 0.014 <sup>NS</sup> 0.014 <sup>NS</sup> 0.0140 <sup>NS</sup> 0.024 <sup>NS</sup> 0.0130 <sup>NS</sup> 0.020 <sup>NS</sup> 0.014 <sup>NS</sup> 0.014 <sup>NS</sup> 0.0140 <sup>NS</sup> |             | ۵ | 0.178 <sup>NS</sup>  | 0.215 <sup>NS</sup>  | -0.035 <sup>NS</sup> | 0.227 <sup>NS</sup>  | 0.388 <sup>NS</sup>  | 0.333 <sup>NS</sup>  | -0.638**            | -0.150 <sup>NS</sup> | -0.406*              | 0.571*               | 0.981**              |                      |                      |                      |    |
| P      -0.222 <sup>NS</sup> -0.449*      -0.007 <sup>NS</sup> -0.344 <sup>NS</sup> 0.065 <sup>NS</sup> 0.025 <sup>NS</sup> 0.014 <sup>NS</sup> -0.147 <sup>NS</sup> -0.242 <sup>NS</sup> 0.130 <sup>NS</sup> 0.020 <sup>NS</sup> 0.026 <sup>NS</sup> 0.014 <sup>NS</sup> 0.020 <sup>NS</sup> 0.005 <sup>NS</sup> 0.005 <sup>NS</sup> 0.005 <sup>NS</sup> 0.005 <sup>NS</sup> 0.022 <sup>NS</sup> 0.014 <sup>NS</sup> 0.014 <sup>NS</sup> 0.049 <sup>NS</sup> 0.049 <sup>NS</sup> 0.049 <sup>NS</sup> 0.040 <sup>NS</sup> 0.040 <sup>NS</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TSS (°Brix) | ഗ | -0.250 <sup>NS</sup> | -0.566**             | -0.046 <sup>NS</sup> | -0.388 <sup>NS</sup> | 0.073 <sup>NS</sup>  | 0.066 <sup>NS</sup>  | 0.011 <sup>NS</sup> | -0.254 <sup>NS</sup> | -0.315 <sup>NS</sup> | 0.175 <sup>NS</sup>  | -0.008 <sup>NS</sup> | -0.009 <sup>NS</sup> |                      |                      |    |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             | ۵ | -0.222 <sup>NS</sup> | -0.449*              | -0.007 <sup>NS</sup> | -0.344 <sup>NS</sup> | 0.065 <sup>NS</sup>  | 0.025 <sup>NS</sup>  | 0.014 <sup>NS</sup> | -0.196 <sup>NS</sup> | -0.242 <sup>NS</sup> | 0.130 <sup>NS</sup>  | 0.020 <sup>NS</sup>  | 0.040 <sup>NS</sup>  |                      |                      |    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Dry M(%)    | ഗ | -0.006 <sup>NS</sup> | 0.282 <sup>NS</sup>  | 0.267 <sup>NS</sup>  | 0.100 <sup>NS</sup>  | -0.335*              | 0.008 <sup>NS</sup>  | 0.655**             | 0.147 <sup>NS</sup>  | 0.187 <sup>NS</sup>  | -0.436 <sup>NS</sup> | -0.614**             | -0.630**             | -0.264 <sup>NS</sup> |                      |    |
| $G = 0.223^{NS} -0.473^{**} -0.473^{**} = 0.119^{NS} -0.057^{NS} -0.282^{NS} -0.241^{NS} -0.147^{NS} -0.197^{NS} -0.493^{*} -0.407^{NS}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             | ۵ | -0.022 <sup>NS</sup> | 0.192 <sup>NS</sup>  | 0.201 <sup>NS</sup>  | 0.081 <sup>NS</sup>  | -0.331 <sup>NS</sup> | 0.022 <sup>NS</sup>  | 0.622**             | 0.132 <sup>NS</sup>  | 0.215 <sup>NS</sup>  | -0.340 <sup>NS</sup> | -0.496*              | -0.517*              | -0.253 <sup>NS</sup> |                      |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PA(µmol/g)  | G | 0.223 <sup>NS</sup>  | -0.473**             | 0.119 <sup>NS</sup>  | 0.057 <sup>NS</sup>  | 0.282 <sup>NS</sup>  | -0.241 <sup>NS</sup> | 0.114 <sup>NS</sup> | 0.197 <sup>NS</sup>  | 0.499*               | -0.493*              | -0.407 <sup>NS</sup> | -0.394 <sup>NS</sup> | -0.013 <sup>NS</sup> | -0.132 <sup>NS</sup> |    |
| -0.378* 0.085 <sup>NS</sup> 0.068 <sup>NS</sup> 0.256 <sup>NS</sup> -0.184 <sup>NS</sup> 0.110 <sup>NS</sup> 0.175 <sup>NS</sup> 0.451* -0.369 <sup>NS</sup> -0.282 <sup>NS</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             | ۵ | 0.202 <sup>NS</sup>  | -0.378*              | 0.085 <sup>NS</sup>  | 0.068 <sup>NS</sup>  | 0.256 <sup>NS</sup>  | -0.184 <sup>NS</sup> | 0.110 <sup>NS</sup> | 0.175 <sup>NS</sup>  | 0.451*               | -0.369 <sup>NS</sup> | -0.282 <sup>NS</sup> | -0.287 <sup>NS</sup> | -0.021 <sup>NS</sup> | -0.132 <sup>NS</sup> |    |

\*\* and \* significant at 1% and 5% respectively, NS – Non significant NOL = Neck Diameter, DB = Double Bulb, PD = Polar diameter, ED = Equitorial diameter, WB = NOL = Number of Leaves, LL = Leaf Length, LD = Leaf Diameter, PH = Plant Height, ND = Neck Diameter, DB = Double Bulb, PD = Polar diameter, ED = Equitorial diameter, WB = Bulb Weight, TY = Total yield, MY = Marketable Yield, TSS = Total Soluble Solid, Dry M = Dry Matter Content, PA = Pyruvic Acid content

Table-4 : Direct or indirect effect of different characters on bulb yield of late kharif onion genotype.

|                             |               |         |         |         |         |          |          | •       | :       |         |         |         |         |         |          |
|-----------------------------|---------------|---------|---------|---------|---------|----------|----------|---------|---------|---------|---------|---------|---------|---------|----------|
|                             | Correlation   | NOL     | =       | 9       | PH (cm) | <b>B</b> | <b>a</b> | DB (%)  | Ð       | DM      | WB (g)  | MY      | TSS     | Dry. M  | PA       |
|                             | (P)With yield |         | (cm)    | (cm)    |         | (mm)     | (mm)     |         | (cm)    | (Days)  |         | (q/ha)  | (Brix)  | (%)     | (b/lomd) |
| NOL                         | 0.167NS       | -0.0137 | -0.0137 | 0.0326  | -0.0359 | -0.0038  | 0.0263   | 0.0098  | -0.0152 | 0.0001  | -0.0009 | 0.1684  | 0.0156  | -0.0007 | -0.0019  |
| LL(cm)                      | 0.203NS       | -0.0029 | -0.0643 | 0.0322  | -0.0239 | -0.0018  | 0.0339   | 0.0031  | -0.0059 | -0.0098 | -0.0024 | 0.2036  | 0.0315  | 0.0064  | 0.0035   |
| LD(cm)                      | -0.018NS      | -0.0037 | -0.0171 | 0.1212  | -0.0337 | -0.0031  | 0.0254   | -0.0422 | -0.0267 | -0.0108 | -0.0009 | -0.0331 | 0.0005  | 0.0067  | -0.0008  |
| PH (cm)                     | 0.236NS       | -0.0078 | -0.0244 | 0.0649  | -0.0629 | -0.0050  | 0.0207   | 0.0175  | 0.0028  | 6900'0- | -0.0035 | 0.2148  | 0.0242  | 0.0027  | -0.0006  |
| PD (mm)                     | 0.390**       | -0.0057 | -0.0127 | 0.0415  | -0.0349 | -0.0090  | 0.0439   | 0.0301  | 0.0052  | -0.0146 | -0.0027 | 0.3668  | -0.0046 | -0.0110 | -0.0024  |
| ED (mm)                     | 0.338*        | -0.0046 | -0.0281 | 0.0397  | -0.0168 | -0.0051  | 0.0776   | -0.0144 | -0.0048 | -0.0181 | -0.0030 | 0.3152  | -0.0018 | 0.0007  | 0.0017   |
| DB (%)                      | -0.645**      | 0.0012  | 0.0018  | 0.0457  | 0.0098  | 0.0024   | 0.0100   | -0.1120 | -0.0293 | 0.0044  | 0.0059  | -0.6034 | -0.0010 | 0.0207  | -0.0010  |
| ND(cm)                      | -0.211NS      | -0.0023 | -0.0042 | 0.0357  | 0.0019  | 0.0005   | 0.0041   | -0.0363 | -0.0906 | 0.0004  | 0.0052  | -0.1423 | 0.0138  | 0.0044  | -0.0016  |
| DM (Days)                   | -0.388**      | 0.0001  | 0.0191  | -0.0394 | 0.0132  | 0.0040   | -0.0425  | -0.0149 | -0.0012 | 0.0331  | 0.0057  | -0.3847 | 0.0170  | 0.0071  | -0.0041  |
| WB (g)                      | 0.584**       | -0.0010 | -0.0127 | 0.0092  | -0.0179 | -0.0020  | 0.0193   | 0.0546  | 0.0383  | -0.0154 | -0.0122 | 0.5407  | -0.0092 | -0.0113 | 0.0034   |
| MY(q/ha)                    | 0.981**       | -0.0024 | -0.0138 | -0.0042 | -0.0143 | -0.0035  | 0.0259   | 0.0714  | 0.0136  | -0.0135 | -0.0070 | 0.9464  | -0.0028 | -0.0172 | 0.0026   |
| TSS (°Brix)                 | 0.020NS       | 0.0030  | 0.0288  | -0.0009 | 0.0217  | -0.0006  | 0.0020   | -0.0015 | 0.0177  | -0.0080 | -0.0016 | 0.0376  | -0.0703 | -0.0084 | 0.0002   |
| Dry. M (%)                  | -0.496**      | 0.0003  | -0.0124 | 0.0243  | -0.0051 | 0.0030   | 0.0017   | 9690.0- | -0.0119 | 0.0071  | 0.0041  | -0.4893 | 0.0178  | 0.0332  | 0.0012   |
| PA(µmol/g)                  | -0.282NS      | -0.0028 | 0.0243  | 0.0103  | -0.0043 | -0.0023  | -0.0143  | -0.0124 | -0.0159 | 0.0149  | 0.0045  | -0.2718 | 0.0015  | -0.0044 | -0.0092  |
| Residual effect = $0.02490$ | = 0.02490     |         |         |         |         |          |          |         |         |         |         |         |         |         |          |

genotypic correlation coefficients were higher than corresponding phenotypic correlation coefficients for most of the characters (Table-3). It is suggested that there was inherent association among the traits but the environment minimized the phenotypic association (10). The genotypic coefficients were higher than corresponding phenotypic ones for the most of the characters reflecting predominant role of heritable factors (12, 18). The genotypic correlation coefficients for leaf length (0.481), polar diameter (0.545), equatorial diameter (0.518) and average weight of bulb (0.78) were significantly and positively correlated with total yield. The result indicated that simultaneous improvement of these characters is possible (19, 20). However, traits like leaf diameter, double bulb percent (10), neck diameter, days to maturity, dry matter content (21) and total soluble solid (17), and pyruvic acid content (12) of bulbs were exhibited negative association with total bulb yield.

Path coefficient analysis: The marketable bulb yield exhibited a very high magnitude of direct effect (0.9464) on total yield followed by equatorial diameter (0.0776), leaf diameter (0.121), days to maturity (0.033) and dry matter content of bulb (0.0332). The direct selection for these characters could be beneficial for yield improvement of onion since these characters also showed positive correlation with bulb yield. Whereas, the high negative indirect effect via leaf diameter (-0.0042), percentage of double bulb (-0.0144), neck diameter (-0.0906), TSS (--0.0703) and pyruvic acid content (-0.0092) on total bulb yield (Table-4.). The similar results of high direct effect via bulb weight, equatorial diameter, plant height and number of leaves were also reported several workers (10,14,19). The equatorial diameter and dry matter content of bulb had strong positive effect on yield which corroborates the findings of previous workers (12,17).

### References

- Tripathi P.C.and Lawande K.E. (2013). Effect of storage environments and packing methods on storage losses in onion. *Indian Journal of Horticulture*, 70(3): 455-458.
- Panse V.G. and Sukhatme P.V. (1985). Statistical methods for agricultural workers. *Indian Council of Agricultural Research*, New Delhi.
- Burton G.W.and De Vane E.H. (1953). Estimating heritability in tall fescue (*Fescue arundianceae* L.) from replicated clonal material. *Agronomy Journal*, 45: 478-481.
- Johnson H.W., Robinson H.F. and Comstock R.E. (1955). Estimates of genetic and environmental variability in soybean. Agronomy Journal, 47(7): 314-318.
- Li C.C. (1968). Population Genetics. The University of Chicago press, London. Cambridge University Press. 366.
- Dewey D.R. and Lu K.H. (1959). A correlation and path coefficient analysis of components of crested wheat grass seed reduction. *J. Agron.*, 51: 515-518.

- Tripathy P., Sahoo B.B., Priyadashini S.K. and Dash D.K. (2016). Evaluation of rabi onion genotype under western zone of Odisha. *International Journal of Farm Science*, 6(3): 216-222.
- Bal S.K., Maity T. andMaji A. (2020). Evaluation of onion genotypes for growth, yield and quality traits under gangetic-alluvial plains of West Bengal. *International Journal of Chemical Studies*, 8(4): 2157-2162.
- Upadhyay A., Dube A.K., Pandey P., Singh V. and Dixit S. (2020). Evaluation of onion (*Allium cepaL.*) accessions for yield attributes and yield for central Uttar Pradesh. *Journal* of Pharmacognosy and Phytochemistry, 9(3): 1457-1459.
- Singh R.K., Dubey B.K., BhondeS.R. and Gupta R.P. (2011). Genetic variability in late kharif (Rangada) onion (Allium cepa L.) Journal of Applied Horticulture, 113 (1): 74-78.
- Singh R.K. and Dubey B.K. (2011). Studies on genetic divergence in onion advance lines. *Indian J. Hort.*, 68(1): 123-127.
- Singh P., Soni A.K., Diwaker P., Meena A.R. and Sharma D. (2017). Genetic Variability Assessment in Onion (*Allium cepaL.*) Genotypes. *International Journal of Chemical Studies*, 5(5): 145-149.
- Chattopadyay A. Sharangi A.B., Dutta S. Das, S. and Dentre M. (2013). Genetic relatedness between quantitive and qualitative parameter in onion (*Aillumcepa L.*). Vegetos-An International Journal of Plant Research, 26(1): 151-157.
- 14. Singh R.K., Dubey B.K., Bhonde S.R. and Gupta R.P. (2010). Estimates of genetic variability, heritability and

- correlation in red onion (*Allium cepa* L.) advance lines. *Indian J. Agri. Sci.*, 80(2): 115-119.
- Parmar V.K., Jivani L.L., Patel S.S. and Mavadia V.V. (2018). Genetic variability, heritability and genetic advance in onion (Allium cepa L.). Journal of Pharmacognosy and Phytochemistry, 7(6): 576-578
- Pyasi R. and Tiwari A. (2016). Genetic variability and character association for yield and its component traits in kharif onion genotypes. *International Journal of Basic and Applied Agricultural Research*, 14(1): 43-49.
- Ram R.B., Navaldey B., Meena M.L., Rubee L. and Mukesh B. (2011). Genetic variability and correlation studies in onion (*Allium cepa* L.) *Vegetos*, 24(1):152-156.
- Narayan R., Singh D.B., Kishor A. and Singh M. (2019).
  Studies on Genetic Variability, Heritability and Genetic Advance in Long Day Onion (*Allium cepa* L.) Genotypes. *Progressive Horticulture*, 51(1): 263 138.
- Hosamani R.M., Patil B.C. and Ajjppalavara P.S. (2010). Genetic variability and character association studies in onion (*Allium cepa* L.). *Karnataka J. Agric. Sci.*, 23(2): 302-305.
- Chattoo M.A., Angrej A. and Kamaluddin (2015). Genetic Variability, Interrelationship and Path analysis for yield and yield related traits in onion (*Aillum cepa L.*) under temperate condition in Kashmir valley. *Plant Archives*, 15(2): 1161-1165.
- Chavda K.A., Jethva A.S., Zinzala S.N., Sapovadiya M.H. and Vachhani J.H. (2021). Character association and their direct and indirect effect on bulb yield in onion (*Aillum cepa L.*). The Pharma Innovation Journal. 10(4): 179-181.