Website: www.asthafoundation.in # **Progressive Research: An International Journal** # Effect of Intercropping Rabi Maize (*Zea mays* L.) with Chickpea (*Cicer arietinum* L.) on Growth and Yield under Middle Gujarat Condition Y.G. Patil^{1*}, K.D. Mevada², G.M. Vaghela², M.R. Bedis¹ and S.P. Singh³ ¹Agricultural Technical School, Mahatma Phule Agricultural University, Jalgaon, Maharashtra #### **Abstract** An agronomical experiment to find out the feasibility of *rabi* maize (*Zea mays* L.) - chickpea (*Cicer arietinum* L.) intercropping system under middle Gujarat condition was carried out at College Agronomy Farm, Anand Agricultural University, Anand (Gujarat) during *rabi* and summer season of 2019-20 and 2020-21 on loamy sand soils found low in organic carbon and available nitrogen, medium in available phosphorus and potassium with slightly alkaline in reaction. The treatment comprised of total six different intercropping treatments *viz.*, T₁- Sole maize, T₂- Sole chickpea, T₃- maize + chickpea 1:1 (Additive series), T₄- maize + chickpea 1:1 (Replacement series), T₅- maize + chickpea 2:1 (Paired row) and T₆- maize + chickpea 2:2 (Paired row) set up under randomized block design. The results manifested significant influence of different intercropping systems on growth and yield attributes of maize *viz.*, dry matter accumulation at harvest, cob length, cob girth, number of grains/cob, grain yield and stover yield of maize, maize equivalent yield, land equivalent ratio under treatment maize + chickpea intercropping system (1:1 Additive series) and significantly the higher plant height at harvest observed under sole maize plant treatment. Sole chickpea recorded significantly the higher plant height at 60 DAS and at harvest, higher plant dry matter accumulation at 60 DAS and at harvest, higher plant dry matter accumulation at 60 DAS and at harvest, higher plant dry matter accumulation at 60 DAS and at harvest, higher plant dry matter accumulation at 60 DAS and at harvest, higher plant dry matter accumulation at 60 DAS and at harvest, higher plant dry matter accumulation at 60 DAS and at harvest, higher plant dry matter accumulation at 60 DAS and at harvest, higher plant dry matter accumulation at 60 DAS and at harvest higher plant dry matter accumulation at 60 DAS and at harvest higher plant dry matter accumulation at 60 DAS and at harvest higher plant dry matter accumulation at 60 DAS and at harvest Key words: Rabi maize, chickpea, additive series, replacement series. ## Introduction Among the different cereals, maize (Zea mays L.) is one of the important staple food crops of the world and ranks next only to wheat and rice. In India, maize is mainly grown for food to human consumption and as a feed for livestock. It is known as a "Queen of cereals" and Miracle crop because of its monoecious nature, higher carbon dioxide assimilation capacity, wider adaptability and high yielding potential. Intercropping, the agricultural practice as growing of two or more crops in the same space at the same time in a particular field, is an age old and commonly used cropping practice which aims at to match efficiently crop demands to the available growth resources and labour. In India, the intercropping systems comprising cereals and legumes are very common. The role of cereal + legume intercropping systems for improving the productivity and profitability and sustaining the soil health through improving physical, chemical and biological soil parameters is well established. However, proper identification of location-specific cereals and legumes and their arrangement is necessary to optimally use the available resources. Maize being one of the important staple food crops of the world and largely cultivated in India confining an area of 9.60 million ha with the production of 27.15 million tonnes, having average productivity of about 2.80 tones/ha (1). In Gujarat state, maize is having an area of 0.44 million ha with a production of 0.68 million tones and productivity of 1659 kg/ha (1). As maize crop is generally cultivated solely at wider row spacing provides an opportunity to cultivate legumes as an intercrop to utilize inter row space for higher profitablyand returns. Among the pulses, chickpea is one of the most important and extensively cultivated pulse crops. However, (2), reported that interfere of legumes intercrops with normal growth of maize crop. That's why, present investigation was undertaken to determine the feasibility of rabi maize-chickpea intercropping system under different row arrangements like additive series, replacement series and paired row (1:1, 2:1 and 2:2) proportions of planting over the respective sole crop of maize and chickpea. #### **Materials and Methods** An agronomical field experiment to find out the feasibility of *rabi* maize (*Zea mays* L.) - chickpea (*Cicer arietinum* L.) intercropping system under middle Gujarat condition was carried out at College Agronomy Farm, Anand Agricultural Received: November-2022; Revised: November-2022; Accepted: November-2022 ²Gujarat Organic Agricultural University, Anand, Gujarat ³CSAUAT-Agriculture Research Station, Kalai, Aligarh, U.P. ^{*}Correspondence Aothour Email: ygpatil79@gmail.com University, Anand (Gujarat) during rabi season of 2019-20 and 2020-21 on loamy sand soils found low in organic carbon, nitrogen, medium in available phosphorus and potassium with slightly alkaline in reaction. The treatment was comprised of total six different intercropping planting patterns viz., T₁- Sole maize, T₂- Sole chickpea, T₃- maize + chickpea 1:1 (Additive series), T₄ - maize + chickpea 1:1 (Replacement series), T₅ - maize + chickpea 2:1 (Paired row) and T₆ - maize + chickpea 2:2 (Paired row) set up under randomized block design. The maize variety GAYMH 3 (Gujarat Anand Yellow Maize Hybrid-3) was taken as main crop which was intercropped with chickpea variety GJG 3 (Gujarat Junagadh Gram 3). The sole crop of maize and chickpea were drilled at 60 cm x 20 cm and 30 cm x 10 cm spacing, whereas, for intercropping system different planting patterns were: maize + chickpea in 1:1 ratio with additive and replacement series, maize + chickpea in paired row with 2:1 and 2:2 ratio, manifesting different plant populations. For paired row the spacing was 45-90-45 cm. The recommended doses of fertilizers i.e., 150:60:00 NPK kg/ha was applied to maize crop only under sole and intercropping system, while 20:40:00 NPK kg /ha was applied only to sole chickpea. Maize as a main crop and chickpea as an intercrop were sown simultaneously. Following characters were calculated from the formula given below : **Shelling percentage:** Shelling percentage is the ratio of grain weight to the cob weight was calculated by following formula: Shelling percentage = $$\frac{\text{Weight of grain kg/ha}}{\text{Weight of cob with shells kg/ha}}$$ 100 Maize equivalent yield (MEY)(kg/ha): Maize equivalent yield was worked out for all the experimental units by following formula: $$\begin{tabular}{lll} Yield of maize + & \hline {\begin{tabular}{ccc} Yield of chickpea & Price of chickpea \\ \hline {\begin{tabular}{ccc} Price of maize \\ \hline \end{tabular}} \begin{tabular}{ccc} Price of maize \\ \hline \end{tabular}$$ Land Equivalent Ratio (LER): The Land Equivalent ratio (LER) of the area under sole cropping to the under intercropping needed to give equal amount of yield at the same management level. $$Land \ Equivalent \ Ratio = \frac{Sum \ of \ the \ fractions \ of \ the \ intercropped \ yield}{Sole \ crop \ yield}$$ ## **Results and Discussion** #### **Periodical Plant Population** **Maize:** Plant population of maize/plot (Table-1) clearly indicated that the significantly higher plant population was recorded under sole maize (279) and maize + chickpea 1:1 Additive series (281) on pooled basis. Similar trend was followed at harvest and significantly higher plant population was recorded under sole maize (267) and maize + chickpea 1:1 Additive series (271) on pooled basis. Significantly the highest plants/plot for chickpea was recorded under sole chickpea treatment at 15 DAS (1099) and at harvest (1074.50). Plant population is one of the vital indicators determining crop yield and particularly in different intercropping systems with different planting patterns and crop geometry number of plants per unit area plays a key role as it balances the allocation of all the resources and inputs for efficient utilization by the component crops. For maize under sole crops and in additive series number of rows remained the same (9 rows/plot), while under replacement series it came down to five (5) rows, while in paired row system there remained eight (8) rows. Chickpea: For chickpea the highest number of rows (18) were found under sole chickpea crop, whereas, for other intercropping systems it came down to eight (8) for 1:1 Additive series and 2:2 paired row series and four (4) for 1:1 replacement series and 2:1 paired row series. These results are in agreement with those reported by (3). ### **Growth parameters** Maize: The mean data pertaining to periodical plant height was measured periodically at 30 and 60 DAS as influenced by different intercropping systems were found to be non - significant during individual years and on pooled basis, whereas at harvest different intercropping system affected plant height significantly (Table 2). At harvest significantly the higher plant height of 184.82 cm was recorded under the treatment T₁ (sole maize) on pooled basis, which was found at par with treatments T₃ (maize + chickpea 1:1 Additive series) and T₄ (maize + chickpea 1:1 Replacement series) for plant height of maize at harvest. An increase in plant height might be attributed to the optimum space available in sole maize that reduced the competition for light and nutrients, which probably provided congenial physical environment and turned the plant to grow taller. While maize intercropped with chickpea (2:1 paired row) recorded considerably lower height compared with sole maize, might be due to higher crop competition for resources like water, nutrient, space which suppress the crop growth. Similar results were reported by (4). Periodical dry matter accumulation (Table-3) for maize recorded at 30 and 60 DAS as influenced by different intercropping systems were found to be non-significant, however, at harvest it was found significantly influenced by different intercropping systems, wherein Treatment T_3 (maize + chickpea 1:1 Additive series) being at par with treatment T_1 (Sole maize) and T_6 (maize + chickpea 2:2) recorded significantly higher plant dry Table-1: Periodical Plant population and plant height of maize and chickpea as influenced by different intercropping systems (On pooled basis). | Intercropping system | Plant popula
15 D | lation/plot at
DAS | Plant popul | Plant population/plot at harvest | Plant heigh | Plant height (cm) at 30
DAS | Plant heigh | Plant height (cm) at 60
DAS | Plant heig
har | Plant height (cm) at harvest | |---|----------------------|-----------------------|-------------|----------------------------------|-------------|--------------------------------|-------------|--------------------------------|-------------------|------------------------------| | | Maize | Chickpea | | T ₁ : Sole Maize | 279 | I | 267.00 | I | 73.73 | I | 148.63 | ı | 184.82 | | | T ₂ : Sole Chickpea | I | 1099 | I | 1074.50 | I | 18.27 | I | 37.19 | I | 51.70 | | T_3 : Maize + chickpea (1:1) Additive series | 281 | 483 | 271.00 | 475.00 | 72.06 | 17.68 | 147.88 | 31.78 | 183.52 | 41.77 | | T_4 : Maize + chickpea (1:1) Replacement series | 155 | 242 | 146.25 | 239.00 | 70.58 | 17.70 | 140.75 | 35.89 | 172.91 | 47.84 | | T_5 : Maize + chickpea (2:1) Paired row (45-90-45 cm) | 242 | 238 | 237.50 | 237.00 | 68.63 | 17.60 | 138.00 | 31.77 | 152.46 | 37.26 | | T_6 : Maize + chickpea (2:2) Paired row (45-90-45 cm) | 244 | 421 | 236.75 | 417.00 | 68.85 | 17.22 | 139.38 | 27.18 | 160.37 | 34.73 | | S.Em. + | 3.67 | 8.30 | 2.81 | 8.36 | 1.94 | 0.48 | 3.96 | 1.12 | 5.27 | 1.44 | | C.D. at 5% | 10.70 | 24.23 | 8.20 | 24.40 | NS | NS | SN | 3.28 | 15.38 | 4.20 | | C.V. % | 8.33 | 7.39 | 7.90 | 7.68 | 7.75 | 7.67 | 7.84 | 9.70 | 8.73 | 9.53 | Table-2 : Periodical Plant dry matter accumulation of maize and chickpea as influenced by different intercropping systems (On pooled basis). | Intercropping system | Plant dry matter ac
at 30 | iry matter accumulation (g/plant)
at 30 DAS | Plant dry matter accumulation (g/plant) at 60 DAS | cumulation (g/plant)
DAS | Plant dry matter accumu
at harvest | Plant dry matter accumulation (g/plant) at harvest | |--|------------------------------|--|---|-----------------------------|---------------------------------------|--| | | Maize | Chickpea | Maize | Chickpea | Maize | Chickpea | | T ₁ : Sole Maize | 42.17 | 1 | 79.89 | I | 141.72 | I | | T ₂ : Sole Chickpea | I | 3.98 | I | 10.97 | I | 15.98 | | T ₃ : Maize + chickpea (1:1) Additive series | 44.87 | 3.65 | 81.92 | 8.35 | 148.71 | 13.13 | | T ₄ : Maize + chickpea (1:1) Replacement series | 42.95 | 3.92 | 77.07 | 10.27 | 134.49 | 14.63 | | T_5 : Maize + chickpea (2:1) Paired row (45-90-45 cm) | 41.68 | 3.65 | 75.36 | 8.28 | 130.52 | 13.23 | | T_6 :Maize + chickpea (2:2) Paired row (45-90-45 cm) | 42.32 | 3.65 | 78.75 | 7.83 | 138.33 | 12.27 | | S.Em. + | 1.25 | 0.12 | 2.37 | 0.31 | 3.85 | 0.47 | | C.D. at 5% | SN | SN | NS | 0.92 | 11.24 | 1.37 | | C.V. % | 8.23 | 8.64 | 8.54 | 9.73 | 7.94 | 9.60 | Table-3: Yield attributes of maize and chickpea as influenced by different intercropping systems (On pooled basis). | Intercropping system | Cob girth
(cm) | Cob
length
(cm) | Number of grains/cob | Number of
nodules/plant
(35 DAS) | Number of
branches/Plant | Number of pods/Plant | Seed Ir | Seed Index (g) | Shelling percentage | |--|-------------------|-----------------------|----------------------|--|-----------------------------|----------------------|---------|----------------|---------------------| | • | Maize | Maize | Maize | Chickpea | Chickpea | Chickpea | Maize | Chickpea | Maize | | T ₁ : Sole Maize | 17.07 | 23.65 | 293.25 | ı | ı | ı | 22.10 | 1 | 75.81 | | T ₂ : Sole Chickpea | I | I | I | 18.53 | 25.14 | 40.55 | I | 22.48 | Ι | | T_3 : Maize + chickpea (1:1) Additive series | 18.58 | 24.33 | 307.00 | 10.50 | 21.35 | 34.76 | 22.84 | 21.53 | 77.33 | | T ₄ : Maize + chickpea (1:1) Replacement series | 17.60 | 20.67 | 253.50 | 13.08 | 22.87 | 37.00 | 21.54 | 20.73 | 74.84 | | T_5 : Maize + chickpea (2:1) Paired row (45-90-45 cm) | 15.16 | 20.75 | 249.38 | 11.53 | 21.53 | 35.37 | 21.25 | 21.36 | 74.71 | | T_6 : Maize + chickpea (2:2) Paired row (45-90-45 cm) | 15.77 | 20.02 | 264.75 | 10.41 | 20.52 | 31.67 | 21.45 | 20.95 | 73.38 | | S.Em. + | 0.54 | 0.70 | 8.90 | 0.47 | 0.70 | 1.25 | 09:0 | 0.64 | 2.27 | | C.D. at 5% | 1.57 | 2.06 | 25.96 | 1.36 | 2.03 | 3.64 | NS | NS | NS | | C.V. % | 9.02 | 8.94 | 9.20 | 10.30 | 8.82 | 9.84 | 7.82 | 8.40 | 8.53 | | | | | | | | | | | | Table-4 : Grain/ Seed and Stover/ Haulm yield of maize and chickpea as influenced by different intercropping systems. | Intercropping system | Grai | Grain yield (kg/ha) | ha) | See | Seed yield (kg/ha) | /ha) | Stove | Stover yield (kg/ha) | ha) | Hauli | Haulm yield (kg/ha) | /ha) | MEY | LEB | |--|---------|---------------------|--------|---------|--------------------|--------|---------|----------------------|--------|---------|---------------------|--------|-------------------|----------| | | | Maize | | | Chickpea | | | Maize | | | Chickpea | | (kg/na) | | | | 2019-20 | 2020-21 | Pooled | (On pooled basis) | d basis) | | T ₁ : Sole Maize | 5447 | 5482 | 5465 | I | 1 | I | 6903 | 6831 | 2989 | I | I | I | 5465 | 1.00 | | T ₂ : Sole Chickpea | I | I | I | 1704 | 1777 | 1740 | I | I | I | 2349 | 2488 | 2418 | 4746 | 1.00 | | T ₃ : Maize + chickpea (1:1) Additive series | 5489 | 5692 | 5591 | 866 | 973 | 985 | 7083 | 7267 | 7175 | 1783 | 1882 | 1833 | 8277 | 1.49 | | T ₄ : Maize + chickpea (1:1) Replacement series | 3738 | 3986 | 3862 | 547 | 528 | 537 | 5837 | 5975 | 2906 | 1232 | 1132 | 1182 | 5327 | 1.38 | | T_5 : Maize + chickpea (2:1) Paired row (45-90-45 cm) | 4554 | 4755 | 4655 | 502 | 498 | 200 | 5772 | 5468 | 5620 | 1080 | 1043 | 1061 | 6018 | 1.30 | | T_{6} : Maize + chickpea (2:2) Paired row (45-90-45 cm) | 4792 | 4805 | 4799 | 743 | 299 | 705 | 6329 | 6613 | 6471 | 1591 | 1448 | 1520 | 6721 | 1.40 | | S.Em. + | 234 | 250 | 171 | 4 | 48 | 32 | 325 | 309 | 224 | 1 | 81 | 99 | 180 | 0.02 | | C.D. at 5% | 693 | 2770 | 200 | 134 | 148 | 92 | 1002 | 953 | 655 | 239 | 250 | 164 | 519 | 0.05 | | C.V. % | 9.76 | 10.11 | 9.94 | 69.6 | 10.84 | 10.27 | 10.18 | 9.62 | 9.90 | 9.64 | 10.16 | 9.90 | 8.34 | 4.03 | Patil et al., 27 Table-5: Economics of maize + chickpea intercropping system (On pooled basis) | Treatments | Maize yield | yield | Chickpea yield | a yield | Maize income | come | Chickpea income | income | Gross | Common | Treat. | - | Net | BCR | |--|-------------|-----------|----------------|---------|--------------|--------|-----------------|--------|-------------|----------------|----------------|-----------------|-------------|------| | | (kg/ha) | ıa) | (kg/ha) | ha) | (₹/ha) | a) | (₹/ha) | ia) | realization | cost
(₹/ha) | cost
(₹/ha) | (₹/ha) | realization | | | l | Grain | Stover | Seed | Haulm | Grain | Stover | Seed | Haulm | (| (in the second | | | (| | | Ļ | 5465 | 6867 | I | ı | 120230 | 2989 | I | I | 127097 | 19752 | 6880 | 26632 | 100465 | 4.77 | | L_2 | I | I | 1740 | 2418 | I | I | 104400 | 4836 | 109236 | 19752 | 8256 | 28008 | 81228 | 3.90 | | L
3 | 5591 | 7175 | 985 | 1833 | 123002 | 7175 | 59100 | 3666 | 192943 | 19752 | 9880 | 29632 | 163311 | 6.51 | | L | 3862 | 2906 | 537 | 1182 | 84964 | 2906 | 32220 | 2364 | 125454 | 19752 | 7130 | 26882 | 98572 | 4.67 | | ⊢
S | 4655 | 5620 | 200 | 1061 | 102410 | 5620 | 30000 | 2122 | 140512 | 19752 | 8380 | 28132 | 112020 | 4.99 | | ⁹ Г | 4799 | 6471 | 705 | 1520 | 105578 | 6471 | 42300 | 3040 | 157389 | 19752 | 9880 | 29632 | 127757 | 5.31 | | Delline reion : Cond = 1 Mais = 5 00 lbs o Phialman = 50 lbs o Chaus = 1 lbs g 1 Hang = 50 lbs | 0000 | P. Oriona | 0 2// 00 : | Chicko | 54/ O3 ₹ | 20,00 | + H | 2 - C | 2√/ C ₩ | | | | | | Haulm 4. Stover Chickpea 'n Ķ Maize price : matter accumulation (148.71 g/plant) on pooled basis. Dry matter accumulation depends upon net photosynthesis which is governed by several factors including space, nutrient availability *etc.* Therefore, it might be due to higher crop competition for resources which suppress the crop growth and reduced number of leaves/ plant and ultimately decrease the dry matter accumulation of a crop. The present findings are in agreement with the results of (5). Chickpea: Intercropping systems did not exert their significant impact on the plant height of chickpea at 30 DAS, while at 60 DAS and at harvest significant difference in plant height of chickpea was observed. At 60 DAS and at harvest treatment T₂ (chickpea sole) being at par with treatment T₄ (maize + chickpea 1:1 Replacement series) recorded significantly higher plant height of 37.19 cm and 51.70 cm, respectively on pooled basis. In the different intercropping systems maize growth was higher as compared to chickpea throughout the growth period that created smothering and shading effect on chickpea after 30 DAS. Due to this effect, availability of light to chickpea was hindered. On the other hand, intercropping system of maize + chickpea (1:1 Replacement series) plant height of chickpea was found higher because row of maize in chickpea provided better light interception as compared to maize + chickpea (1:1 Additive series). Efficient utilization of solar radiation causes increase in photosynthetic activity, metabolic activity and efficient utilization of applied nutrients. Results were in confirmation of those reported by (6). It was further observed that though at 30 DAS different intercropping systems could not exert their significant effect on the dry matter accumulation, but at 60 DAS and at harvest significant difference in dry matter accumulation of chickpea was observed due to intercropping systems. At 60 DAS and at harvest treatment T_2 (chickpea sole) being at par with T_4 (maize-chickpea 1:1 replacement series) gave significantly net higher dry matter accumulation (10.97 and 15.98 g/plant, respectively) in pooled analysis. It might be due to the maize with chickpea intercropping combination the competition faced by intercropped chickpea resulted into poor growth due to smothering effect of maize and thus should be less dry matter accumulation as compared to sole chickpea. Similar opinion was mentioned by (7). #### Yield attributes Maize: Data on cob girth, cob length and number of grains/cob (Table-3) revealed that different intercropping systems manifested significant impact on all the three characters. Significantly higher cob girth (18.58 cm) on pooled basis was recorded under treatment T₃ (maize + chickpea 1:1 Additive series), which was found at par with treatment T₁ (maize sole) and T₄ (maize + chickpea 1:1 Replacement series). Though, Treatment T₃ (maize + chickpea 1:1 Additive series) showed significantly higher cob length (24.33 cm) on pooled basis, it was found at par with the treatment T₁. Significantly higher values of number of grains/cob (307.00) were found on pooled basis under T₃ (maize + chickpea 1:1 Additive series) treatment, but it was found statistically identical with the treatment T₁ (sole maize). Seed index and shelling percentage were remained unaffected due to different intercropping systems. This might be due to lower competition for the nutrient uptake and space suitable for proper growth and development. Besides this chickpea as an intercrop fix biological nitrogen in the soil. Symbiotic rhizobium through bacteria survives on root nodule. The fixed nitrogen could be utilized by maize for better cob girth, cob length and number of grains/cob. These results also collaborated by (8, 9). **Chickpea:** Results pertaining to number of noduled/plant. number of branches/plant and number of pods/plants of chickpea showed significant influence, while seed index was not differed appreciably due to different intercropping systems (Table-3). Treatment T2 (sole chickpea) had significantly the highest number of nodules/ plant (18.53) in pooled analysis. Treatment T2 (chickpea sole) being at par with treatment T₄ (maize + chickpea 1:1 Replacement series) showed significantly the higher number of branches / plant (25.14) and number of pods/ plant (40.55) in pooled analysis. The results might be ascribed to efficient utilization of soil moisture, solar radiation and nutrients, accrued to wider inter row space and increased photosynthesis and metabolic activity under treatment T₂ (chickpea sole) and T₄ (maize + chickpea 1:1 Replacement series). An increased photosynthesis might transformed source to sink effectively. Similar results were found by (2, 10). #### Yield **Maize:** The appraisal of mean data presented in Table-4 revealed that grain yield of maize was significantly influenced due to different intercropping systems during the year 2019-20, 2020-21 and in pooled analysis. Treatment T_3 (maize + chickpea 1:1 Additive series) recorded significantly the higher grain yield during the year 2019-20 (5489 kg / ha), 2020-21 (5692 kg/ha) and in pooled analysis (5591 kg / ha). However, it was found statistically at par with treatment T₁ (sole maize). The percent increase in grain yield under the treatment T₃ was higher over the treatment T₄, T₅ and T₆ were 45%, 20% and 17% on pooled basis, respectively. It was further evident from the data that stover yield was also significantly influenced due to different intercropping systems during both the years as well as in pooled analysis. Treatment T₃ (maize + chickpea 1:1 Additive series) registered significantly the higher stover yield (7083, 7267 and 7175 kg/ha) during the years 2019-20, 2020-21 and pooled analysis, respectively, however, it was found at par with treatment T₁ (sole maize) and T₆ (maize + chickpea 2:2 paired row) during first and second year. The percent increase in stover yield under the treatment T_2 was higher over the treatment T_3 , T_4 , T_5 and T₆ were 5%, 21%, 28% and 8%, respectively on pooled basis. Yield is a resultant effect of cumulative impact of all the growth and yield attributes. The significant impact of treatment T3 (maize + chickpea 1:1 Additive series) on grain yield might be ascribed to its better performance through out to growth period and obtaining higher yield attributes viz, higher cob length, cob girth, number of grains/cob under this treatment. The higher performance in maize-chickpea 1:1 (Additive series) intercropping system might be accrued to sufficient availability of solar radiation, soil moisture and nutrients. The increase in stover yield under treatment T₃ is mainly attributed to growth attributing parameter like plant height. These results are in conformity with findings of (5, 6, 9). Chickpea: Results on seed (Table-4) of chickpea showed that there was a significant impact of different intercropping systems on seed yield of chickpea. Significantly the highest seed yield of chickpea (1704, 1777 and 1740 kg / ha) was obtained under the treatment T₂ (sole chickpea) during the year 2019-20, 2021-21 and on pooled basis, respectively. The per cent increase in seed yield under the treatment T_2 was to the tune of 77%, 224%, 248% and 146% on pooled basis over the treatment T₃, T₄, T₅ and T₆ respectively. As far as haulm yield was concerned, treatment T2 (sole chickpea) produced significantly the highest haulm yield of 2349, 2488 and 2418 kg/ha during the both the year as well as on pooled basis, respectively. The percent increase in haulm yield under the treatment T₂ was higher over the treatment T₃, T₄, T₅ and T₆ were to the tune of 32%, 105%, 128% and 59%, respectively on pooled basis. The superiority of seed yield in sole chickpea might be due to efficient utilization of available resources under no competition from maize crop. Secondly, plant population of chickpea was lower under all the maize + chickpea Patil et al., 29 intercropping system (1:1 and 2:2). This might be the reason for 50% seed yield reduction in intercropping system. Similar results were reported by (11, 12). #### MEY, LER and Economics Treatment T₃ (maize + chickpea 1:1 Additive series) out yielded all the treatments with significantly the highest maize equivalent yield of 8277 kg/ha in pooled analysis. An increase reported under T_3 over the treatments T_1 , T_2 , T_4 , T_5 and T_6 were to the tune of 51%, 74%, 55%, 37% and 23% on pooled basis, respectively (Table-4). It is evident from the data (Table 4) that all intercropping systems gave land equivalent yield (LER) greater than 1.0. The difference in LER due to different treatments was found significantly the highest under treatment T₃ (maize + chickpea 1:1 Additive series) i.e., 1.49 in in pooled analysis, indicating 49% more area would be required for producing the same quantity of grain yield for solitary cropping system compared to intercropping. Economics of maize + chickpea intercrops as influenced by different intercropping systems (Table-5) indicated that treatment T₃ (maize + chickpea 1:1 Additive series) fetched the highest net realization (?1,63,311/ ha) with maximum BCR value of 6.51. #### Conclusions In the light of above discussion it could be conclude that intercropping system with maize -chickpea with 1:1 (Additive series) produced higher maize equivalent yield, covering highest land equivalent ratio and fetching highest net realization and BCR under middle Gujarat condition. #### References - Anonymous (2018). Agricultural Statistics at a glance 2018, Government of India Ministry of Agriculture and Farmer Welfare Department of Agriculture, Cooperation & Farmers Welfare Directorate of Economics and Statistics, retrieved from. http://www.agricoop.nic.in. - Kheroar Shyamal and Patra Bikaschandra (2013). Advantages of maize-legume intercropping systems. Journal of Agricultural Science and Technology. B (3): 733-744 - 3. Ali S., Patel A.M., Sharma S., Yadav B.L. and J. Singh. (2017). Management of cropping systems for resource conservation. *Research on Crops*, 18 (3): 401-08. - Patel A.K., Ardeshna R.B., Dinesh Kumar and Mawalia, A.K. (2018). Growth and yield of summer maize as influenced by intercropping systems. *Journal of Pharmacognosy and Phytochemicals*, 7(2): 1004-1007. - Pandey Pragya, Bajpai Anshita, Bhambari M.C. and R.K. Bajpai (2020). Effects of intercropping on chlorophyll content in maize (*Zea mays* L.) and soybean (*Glycine max* L.) *International Journal of Current Microbiology and* Applied Sciences, 9(6): 376-383. - Prabhakar and Chandranath A.T. (2017). Effect of planting pattern and sowing dates of maize with fieldpea intercropping system. Research on Crops, 18(1): 10-14. - Pandey Deepak, Bhatnagar Amit, Singh Gurvinder and Samartha (2019). Growth response of intercropped maize (Zea mays L.) and urdbean (Vigna mungo L.) under different planting patterns and nutrient management practices. Pantnagar Journal of Research. 17(2): 99-106. - Reddy A.S. and Y.B. Pulled (2016). Effect of intercropped fodder cowpea on maize + fodder cowpea intercropping systems. *Journal of Farm Science*, 29(2): 265-67. - Vaghela G.M., Mevada K.D., Ninama S.D. and Patel H.K. (2020). Influence of intercropping system and integrated nitrogen management in maize (popcorn) (*Zea mays everta* L.) - chickpea (*Cicer arietinum* L.) intercropping under middle Gujarat conditions. *International Journal of Chemical Studies*, 8(5): 1769-1774. - Panwar C.S., Singh J.P., Meena R.N. and P. Kumar (2016). Effect of planting pattern and fertility level on hybrid maize+legume intercropping systems under dryland condition. *Indian Journal of Agronomy*, 61(1): 20-24. - Mohapatra S., Mohanty A.K., Tripathy S.K., Nayak B.R., Panigrahy N., Samant P.K. and S. Lennka (2016). Irrigation schedule and crop geometry effect on weed management in maize + greengram intercropping system. *Indian Journal of Weed Science*, 48(3): 287-89. - Bezabih Woldekiros (2020). Evaluation of sequential intercropping of maize with common bean followed by chickpea. Academic Research Journal of Agricultural Science and Research, 8(2): 70-73.